An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Course Code: BSCS101
Course Title: Applied Mathematics

Programme: B.Tech.	L: 3 T: 1 P: 0	Credits: 4		
Semester: 3	Theory/Practical: Theory	Teaching Hours: $45(L) + 15(T) = 60 \text{ hrs}$		
Total Max. Marks:	Continuous Assessment (CA) Marks: 40	End Semester Examination (ESE) Marks: 60		
Minimum Percentage of Numerical / Design / Programming Problems in ESE: 95%				
Duration of End Semester Examination (ESE): 3 hours				
Course Type: Core Course				

Prerequisites (if any): Knowledge of matrices, differentiation and integration and differential equations

Additional Material Allowed in ESE: NIL

On completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Apply concepts of inner product spaces to solve problems involving orthogonalization Gram
	Schimdt process.
2	Use Laplace transforms to solve ordinary differential equations with initial conditions.
3	Apply Fourier integrals to solve problems in engineering.
4	Implement interpolation algorithm in computation tools for engineering applications.
5	Implement numerical techniques for solving algebraic equations and for performing numerical integration.

Contents

Part-A

Unit-1 Laplace Transforms

11 (L)hrs

Definition and existence of Laplace Transforms, Laplace transforms of various standard functions, properties of Laplace transforms, inverse Laplace transforms, transform of derivatives and integrals, Transform of multiplication and division by t, convolution theorem, Laplace transform of unit step function. Applications to solution of ordinary linear differential equations with constant coefficients, Applications to solve initial and boundary value problems.

Unit-2 Fourier Series 12 (L)hrs

Introduction, even and odd functions, periodic functions, Dirichlet's conditions for Fourier series, Euler's formulae for Fourier series expansion, change of interval, Half Range series expansions, Fourier series on arbitrary intervals, Application of Fourier series to solve different waveforms.

Part-B

Unit-3 Numerical Methods

10 (L)hrs

Bisection Method, Newton Raphson Method to solve the algebraic equations, Simpon's Method and Trapezoidal method to evaluate the definite integral, interpolation, forward and backward differences, Newton's Forward Interpolation Formula and Newton's Backward Interpolation formula.

Unit-4 Advanced Linear Algebra

12 (L)hrs

Solution of system of linear equations, Linear Spaces, Vector Spaces, Vector Sub Spaces, Basis and dimension, Inner product, Gram Schmidt orthogonalization process, Eigen-values, Eigen-vectors and Diagonalisation, Projection matrix, orthogonal matrix, idempotent Matrix, Partition matrix, Nullity, LU decomposition.

Tutorials may be conducted in lab settings and SageMath/GeoGebra/GNU Octave could be used to execute the lessons (as the case may be).

Text Books

- 1. B.S. Grewal, "Higher Engineering Mathematics", 44th edition, Khanna Publishers, 2021.
- 2. M.K. Jain, S.R.K. Iyengar, R.K. Jain, "Numerical Methods for Scientific and Engineering Computation", 6th edition, Newage International Publishers, 2003.

Reference Books

- 1. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th edition, Wiley India Pvt Ltd, 2016.
- 2. B.S. Grewal, "Numerical methods in Engineering and Science with Programes in C, C++ & Matlab", 11th, Khanna Publishers, 2013
- 3. Axler, Sheldon, "Linear Algebra Done Right", 4th, Cham, Switzerland: Springer International Publishing, 2024.
- 4. Iyengar, T.K.V., B.Krishna Gandhi and S. Ranganatham & M.V.S.S.N. Prasad, "Laplace Transforms, Numerical Methods & Complex Variables", S. Chand Publishing, 2018.
- 5. Sreenadh, S, "Fourier Series and Integral Transforms", New Delhi, India: S Chand, 2014.
- 6. Atkinson, Kendall, Nashville, TN "An Introduction to Numerical Analysis", 2nd edition, John Wiley & Sons, 1989.

Page 2 **of** 26

7. Strang, Gilbert, "Introduction to Linear Algebra", 6th edition, Wellesley, MA: Wellesley-Cambridge Press, 2023.

Online Learning Materials

1. https://www.cimt.org.uk/projects/mepres/alevel/fstats ch5.pdf

Accessed on April 12,2025

2. https://www.cs.ox.ac.uk/files/12921/book.pdf

Accessed on April 14,2025

3. https://www.youtube.com/watch?v=nH05UiErAX4

Accessed on April 12,2025

4. https://www.youtube.com/watch?v=d7NF- 8vVv4&t=2s

Accessed on April 14,2025

5. https://www.webpages.uidaho.edu/~stevel/519/Applied%20Multivariate%20Statistical%20Analysis%20by%20Johnson%20and%20Wichern.pdf

Accessed on April 14,2025

6. http://ndl.ethernet.edu.et/bitstream/123456789/55096/1/Tsuneo%20Arakawa.pdf Accessed on April 14,2025

Supplementary SWAYAM Course

	Course Name	Instructor	Host Institute	URL
1	Linear Algebra			https://onlinecourses.nptel.ac.in/noc25_ma37/preview
2		Prof. S. Baskar	IIT Bombay	https://onlinecourses.nptel.ac.in/noc25_ma41/preview
3	Fourier Analysis and its applications	Krishna Srinivasan	IIT Bombay	https://onlinecourses.nptel.ac.in/noc25_ma23/preview

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Course Code: CCS101
Course Title: Object Oriented Programming

Programme: B.Tech.	L: 2 T: 0 P: 4		Credits: 4	
Semester: 3	Theory/Practi	cal:	Teaching Hours: $30(L) + 60 (P) = 90$	
	Theory		hrs	
Total Max. Marks: 150	Continuous	Internal	End Semester Examination (ESE)	
	Assessment	(CA)	Marks: 60	
	Marks: 90			
Minimum Percentage of Numerical / Design / Programming Problems in ESE: 30%				
Duration of End Semester Examination (ESE): 3 hours				
Course Type: Core Course				

Prerequisites (if any): Basics of Programming

On completion of the course, the student will have the ability to:

CO#	Course Outcomes	
1	Demonstrate programming skills in writing, compiling and debugging C++ programs.	
2	Use class and object to implement object-oriented approach.	
3	Apply inheritance and polymorphism to implement object-oriented programs.	
4	Analyse the relevance of dynamic memory management for effective memory utilization.	
5	Make use of exception handling and file handling in program development.	
6	Develop solution for programming problems using object-oriented principles.	

Contents

Part-A

Unit-1 Object Oriented Programming Concepts

4(L) hrs

Introduction, Comparison between Procedure oriented approach and Object-oriented approach, Basic data types, Derived data types, Keywords, Identifiers, Constants and variables, Type casting, Operators, and Operator precedence. Control Structures- if statement, switch-case, for, while and do-while loops, break and continue statement. Features of object-oriented programming- Class, Objects, Encapsulation, Abstraction, Data hiding, Polymorphism and Inheritance.

Unit-2 Classes and Objects

5(L) hrs

Implementation of a class, Class objects, Access specifiers, Accessing class members, Constructor and destructor, Types of constructors, Empty class, Nested class, Friend function, Inline function, Friend class, Static members.

Unit-3 Inheritance 5(L) hrs

Introduction, Defining derived classes, Types of inheritance, Ambiguity in inheritance, Virtual base class, Objects slicing, Overriding member functions.

Part-B

Unit -4 Dynamic Memory Management using Pointers

5(L) hrs

Declaring and initializing pointers, Accessing data through pointers, Pointer arithmetic, Memory allocation – Comparison of Static and Dynamic, Dynamic memory management using new and delete operators, Pointer to an object, this pointer, Pointer related problems – Dangling/wild pointers, Null pointer assignment, Memory leak and Allocation failures.

Unit-5 Polymorphism and Type Conversion

6(L) hrs

Concept of binding – Early binding and late binding, Virtual functions, Pure virtual functions, Abstract class. Function overloading, Constructor overloading, Operator Overloading, Rules for overloading operators, Overloading of various operators. Type conversion – Basic type to class type, Class type to basic type, Class type to another class type.

Unit-6 Exceptions Handling and File Handling

5(L)hrs

Review of traditional error handling, Basics of exception handling, Exception handling mechanism, Throwing and catching mechanism, Rethrowing an exception, Specifying exceptions. File streams, Error handling during file operations, Reading/writing of files, accessing records randomly, Updating files.

Laboratory Work

In the laboratory work, students will implement programs related to above topics using any open-source C++ tools, such as Code Blocks, Dev-C++, VS Code etc.

Following is only the suggested list of Practical's. Instructor may frame additional Practical's relevant to the course contents.

	Experiment Title	
No.		
1.	Program to illustrate the use of class and object.	
2.	Program to use decision control statements using class and object.	
3.	Program to use Loop control statements using class and object.	

4.	Program to illustrate the concept of nesting of member functions.
5.	Program to illustrate the concept of default parameters in a function.
6.	Program to implement a local class.
7.	Program to illustrate the concept of nested class.
8.	Program to illustrate the concept of inline function.
9.	Program to illustrate the concept of friend function.
10.	Program to illustrate the concept of empty class.
11.	Program to show the working of static data members in a class.
12.	Program to show the working of static functions in a class.
13.	Program to illustrate the concept of friend class.
14.	Program to illustrate the concept of default constructor.
15.	Program to illustrate the use of parameterized constructor.
16.	Program to illustrate the use of copy constructor.
17.	Program to illustrate the concept of dynamic constructor.
18.	Program to illustrate the concept of destructors.
19.	Program to illustrate the concept of single inheritance.
20.	Program to illustrate the concept of multilevel inheritance.
21.	Program to illustrate the concept of multiple inheritance.
22.	Program to illustrate the concept of hierarchical inheritance.
23.	Program to illustrate the concept of hybrid inheritance.
24.	Program to illustrate the concept of ambiguity in single inheritance.
25.	Program to illustrate the concept of ambiguity in multiple inheritance.
26.	Program to illustrate the concept of virtual base class/multipath inheritance.
27.	Program to illustrate the concept of dynamic memory management using new and delete.
28.	Program to illustrate the use of this pointer.
29.	Program to show pointer arithmetic operations.
30.	Program to overload unary minus operator.
31.	Program to overload prefix and postfix increment operators.
32.	Program to overload binary addition operator.
33.	Program to add two complex numbers using binary operator overloading.
34.	Program to illustrate the use of virtual function.
35.	Program to illustrate the concept of abstract class.
36.	Program to illustrate basic to class type conversion.
37.	Program to illustrate class to basic type conversion.

38.	Program to illustrate class to class type conversion using constructor.			
39.	Program to illustrate class to class type conversion using casting operator.			
40.	Program to illustrate the concept of exception handling for throw point inside the try block.			
41.	Program to illustrate the concept of exception handling for throw point outside the try block.			
42.	Program to illustrate the concept of exception handling for multiple catch statements.			
43.	Program to illustrate the concept of exception handling for rethrowing an exception.			
44.	Program to illustrate the concept of exception handling with single catch statement for all exceptions.			
45.	Program to perform read and write operations on file using get(), put().			
46.	Program to perform read and write operations on file using read(), write().			
47.	Program to illustrate the concept of file pointers.			
48.	 i. Banking System: The Banking System project has account class with data members like account number, name, deposit, withdraw amount and type of account. Customer data is stored in a binary file. A customer can deposit and withdraw amount in his account. User can create, modify and delete account. ii. Library Management System: Creating a simple text-based system for managing library. It allows users (admin/librarian) to add new books, view book details, and update availability status. Users should be able to issue books to students (marking them as issued) and return them. It also maintains details such as book title, author, ID and availability. Implement using file handling to preserve data like issued books and book inventory even after closing the application. iii. Student Grade Management System: Design console-based application that allows the user (e.g., a teacher) to enter student names, roll numbers, and their marks for various subjects. The program will then calculate total marks, average percentage, and assign a grade (A, B, C, etc.) based on predefined criteria. It should also be able to display the individual student's report card and allow editing or viewing student records. Add file handling to save and retrieve student data between sessions. iv. Simple ATM Interface: This project simulates a basic ATM interface that requires users to enter a PIN for authentication. Once logged in, the user can perform operations such as checking balance, withdrawing cash and depositing money. The account details (like current balance) should be 			

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

stored and updated after every transaction. It should work for multiple user accounts and use file handling to save data persistently.
Any other project recommended by the instructor.

Text Books

- 1. E. Balagurusamy, "Object Oriented Programming with C++", 8th edition, Tata McGraw Hill, 2020.
- 2. P Yashavant Kanetkar, "Let Us C++", 3rd edition, BPB Publications, 2019.

Reference Books

- 1. Paul Deitel and Harvey Deitel, "C++ How to Program", 10th edition, Pearson, 2016.
- 2. R. Lafore, "Object Oriented Programming in C++", 4th edition, Waite Group, 2002.
- 3. Herbert Schildt, "The Complete Reference to C++ Language", 4th edition, McGraw Hill-Osborne, 2017.

Online Learning Materials

1. https://faculty.iitr.ac.in/cs/bala/OOPS/csn103.html

Accessed on 24-04-2025

- 2. https://www.youtube.com/watch?v=iw1Xf_33YM0&list=PLQEaRBV9gAFujcBWJhBT2 XXsuMlIfETBy Accessed on 24-04-2025
- 3. https://www.youtube.com/watch?v=qq3BY4viEB4&list=PLQEaRBV9gAFujcBWJhBT2 XXsuMlIfETBy&index=4 Accessed on 24-04-2025
- 4. https://www.youtube.com/watch?v=p2h8rGnkD0o&list=PLQEaRBV9gAFujcBWJhBT2 XXsuMlIfETBy&index=6 Accessed on 24-04-2025
- 5. https://www.youtube.com/watch?v=NBsmPHXjLfg&list=PLQEaRBV9gAFujcBWJhBT2 XXsuMlIfETBy&index=8 Accessed on 24-04-2025

Supplementary SWAYAM Course

Sr. No.	Course Name	Instructor	Host Institute	URL
1	Fundamentals of Object-Oriented Programming	Prof. Balasubramania n Raman	IIT Roorkee	https://onlinecourses.nptel.ac.in/ noc25_cs34/preview
2	Programming in C++	Prof. Partha Pratim Das	IIT Kharagpur	https://onlinecourses.nptel.ac.in/noc20_cs07/preview

3	Programming in Modern C++	Prof. Partha Pratim Das	IIT Kharagpur	https://onlinecourses.nptel.ac.in/noc25_cs58/preview

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

> Course Code: CCS102 Course Title: Data Structures

Programme: B.Tech.	L: 3 T: 1 P: 4	Credits: 6	
Semester: 3	Theory/Practical:	Teaching Hours: $45(L) + 15(T) +$	
	Theory	60(P) = 120 hrs	
Total Max. Marks:	Continuous Internal	End Semester Examination (ESE)	
150	Assessment (CA)	Marks: 60	
	Marks: 90		
Minimum Percentage of Numerical / Design / Programming Problems in ESE: 50%			
Duration of End Semeste	Semester Examination (ESE): 3 hours		
Course Type: Core Course			

Prerequisites (if any): Basics of Programming

On completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Apply Arrays and Linked Lists to solve computational problems.
2	Implement stack and queue data structures to solve programming problems.
3	Apply appropriate indexing and searching techniques to optimize data storage and retrieval.
4	Analyze non-linear data structures to perform efficient storage, retrieval, and traversal operations.
5	Analyze time and space complexity of different sorting algorithms.
6	Identify the appropriate data structure to provide solution with reduced space and time complexity.

Contents

Part-A

Unit-1 Basic concepts and Arrays

5(L) hrs

Concept of data type, Linear and non-linear data structures, Data structures versus data types, Operations on data structures, Algorithm complexity and Asymptotic notations. Linear and multi-dimensional arrays and their representation, Operations on arrays, Sparse matrices and their storage.

Unit-2 Searching and Sorting

4(L) hrs

Linear and binary search techniques, Sorting methods – Bubble sort, Selection sort, Insertion sort, Merge sort, Shell sort and radix sort. Complexities of searching and sorting algorithms.

Unit -3 Linked List 7(L) hrs

Definition and representation of Linked list, Types of Linked list- Linear linked list, Doubly linked list, Circular linked list and Header linked list and their operations, Application of linked lists.

Unit -4 Stacks 7(L) hrs

Sequential and Linked representation of stacks, Operations on stacks, Application of stacks – parenthesis checker, Evaluation of postfix expressions, Conversion from infix to postfix, Conversion from infix to prefix representation, Tower of Hanoi problem, implementing recursive functions, Quick sort.

Part-B

Unit-5 Queues 4(L) hrs

Sequential and Linked representation of queue, Types of queue- Linear Queue, Circular Queue, Dequeue, Priority Queue, Operations on each types of Queues and their algorithms, Applications of Queues.

Unit-6 Trees 7(L)hrs

Basic terminology, Sequential and linked representations of trees, Tree Traversals, Different types of Trees- Binary Tree, Binary search tree, Threaded binary tree, AVL tree, B-tree, B⁺- tree, Red Black tree. Operations on each of the trees. Application of Binary Trees.

Unit-7 Heaps 2(L)hrs

Representing a heap in memory, Operations on heaps, Application of heap in implementing priority queue and Heap sort algorithm.

Unit-8 Graphs 6(L)hrs

Basic terminology, Representation of graphs – Adjacency matrix, Adjacency list. Operations on graph, Traversal of a graph – Breadth first search, Depth first search. Shortest path algorithms - Dijkstra's and Floyd-Warshall algorithm. Minimum spanning tree – Prim and Kruskal. Applications of graphs.

Unit-9 Hashing and Hash Tables

3(L)hrs

Introduction to hash table, Hash functions, Concept of collision and its resolution using open addressing and separate chaining, Double hashing, Rehashing.

Tutorial hours will be used for practice sessions for numerical/programming problems and design of algorithms related to above contents.

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Laboratory Work

In the laboratory work, students should implement these data structures using any open-source C++ tools, such as Code Blocks, Dev-C++, VS Code etc.

Following is only the suggested list of Practical's. Instructor may frame additional Practical's relevant to the course contents.

Experiment Experiment Title					
No.					
1	Write a program to add two matrices.				
2	Design, Develop and Implement a menu driven Program for the following Array				
	operations				
	a. Display of Array Elements with Suitable Headings				
	b. Inserting an Element (ELEM) at a given valid Position (POS)				
	c. Deleting an Element at a given valid Position (POS)				
	d. Exit.				
3	Write a Program to find the position of an element in an array using Linear Search Algorithm.				
4	Write a Program to find the position of an element in an array using Binary search Algorithm.				
5	Write a program to sort list using bubble sort.				
6	Write a program to sort list using selection sort.				
7	Write a program to sort list using insertion sort.				
8	Write a program to sort list using merge sort.				
9	Design, Develop and Implement a menu driven Program for the following				
	operations on Singly Linked List (SLL) of Student Data with the fields: USN,				
	Name, Branch, Sem, Phone Number				
	a. Insert new student at beginning of list.				
	b. Insert new student at end of list.				
	c. Insert new student in the middle of the list.				
	d. Display all records and count the number of nodes in it.				
	e. Delete first student from the list.				
	f. Delete last student from the list				
	g. Delete nth student from the list.				
	h. Exit.				

Guru Nanak Dev Engineering College, Ludhiana An Autonomous College under UGC Act 1956

B.Tech. (CSE), Scheme - 2024

Experiment	Experiment Title		
No.			
10	Design, Develop and Implement a Program to perform insertion, deletion and traversing in a sorted Singly Circular Linked List (SCLL) with header nodes.		
11	Design, Develop and Implement a menu driven Program for the following		
	operations on Doubly Linked List (DLL) of Employee Data with the fields: SSN,		
	Name, Dept, Designation, Sal, Phone Number		
	a. Insert new student at beginning of list.		
	b. Insert new student at end of list.		
	c. Insert new student in the middle of the list.		
	d. Display all records and count the number of nodes in it.		
	e. Delete first student from the list.		
	f. Delete last student from the list		
	g. Delete nth student from the list.		
	h. Exit.		
12	Implement a Program to find the sum of two polynomials POLY1(x,y,z) and		
	POLY2(x,y,z) and store the result in $POLYSUM(x,y,z)$		
13	Design, Develop and Implement a menu driven Program for the following		
	operations on STACK of Integers (Array Implementation of Stack with maximum		
	size MAX)		
	a. Push an Element on to Stack		
	b. Pop an Element from Stack		
	d. Display the elements of Stack		
	e. Exit		
14	Design, Develop and Implement a menu driven Program for the following		
	operations on STACK of Integers (Linked Implementation)		
	a. Push an Element on to Stack		
	b. Pop an Element from Stack		
	d. Display the elements of Stack		
	e. Exit		
15	Design and implement a program to check if a given number is Palindrome or not		
	using stack.		
16	Design, Develop and Implement a Program for evaluating Suffix expression with		
	single digit operands and operators: +, -, *, /, %, ^.		

Guru Nanak Dev Engineering College, Ludhiana An Autonomous College under UGC Act 1956

B.Tech. (CSE), Scheme - 2024

Experiment	Experiment Title			
No.				
17	Design, Develop and Implement a Program for converting an Infix Expression to Postfix Expression. Program should support for both parenthesized and free parenthesized expressions with the operators: +, -, *, /, % (Remainder), ^(Power) and alphanumeric operands			
18	Design, Develop and Implement a Program for solving Tower of Hanoi problem with n disks			
19	Write a program to sort list using quicksort.			
20	Design, Develop and Implement a menu driven Program for the following operations on Linear QUEUE (Array Implementation of Queue with maximum size MAX) Insert an Element on to Linear QUEUE Delete an Element from Linear QUEUE Display the elements of Linear QUEUE Exit			
	Support the program with appropriate functions for each of the above operations.			
21	Design, Develop and Implement a menu driven Program for the following operations on QUEUE (Linked Implementation) Insert an Element on to QUEUE Delete an Element from QUEUE Display the elements of QUEUE Exit Support the program with appropriate functions for each of the above operations.			
22	Design, Develop and Implement a menu driven Program for the following operations on Circular QUEUE (Array Implementation of Queue with maximum size MAX) a. Check Overflow and Underflow situations on Circular QUEUE b. Insert an Element on to Circular QUEUE c. Delete an Element from Circular QUEUE d. Display the elements of Circular QUEUE e. Exit Support the program with appropriate functions for each of the above operations			

Experiment	Experiment Title
No.	
23	Design, Develop and Implement a menu driven Program for the following operations on Dequeue QUEUE (Array Implementation of Queue with maximum size MAX) a. Check Overflow and Underflow situations on Dequeue QUEUE b. Insert an Element on to Dequeue QUEUE c. Delete an Element from Dequeue QUEUE d. Display the status of Dequeue QUEUE e. Exit
	Support the program with appropriate functions for each of the above operations
24	Design, Develop and Implement a menu driven Program for the following operations on Priority QUEUE (Array Implementation of Queue with maximum size MAX) Insert an Element on to Priority QUEUE Delete an Element from Priority QUEUE Display the status of Priority QUEUE Exit Support the program with appropriate functions for each of the above operations
25	Design, Develop and Implement a menu driven Program for the following operations on Binary Search Tree (BST) of Integers. a. Insertion in a BST. b. Traverse the BST in Inorder, Preorder and Post Order. c. Search an element in BST d. Deletion in BST e. Exit
26	Design, Develop and Implement a menu driven Program for the following operations on AVL Tree of Integers. Insertion in an AVL Tree. Search an element in AVL Deletion in AVL Exit
27	Write a program to sort list using Heapsort.

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Experiment	Experiment Title				
No.					
28	Design, Develop and Implement a menu driven Program for the following				
	operations on Graph(G) of Cities				
	a. Create a Graph of N cities using Adjacency Matrix				
	b. Traverse Graph using DFS				
	c. Traverse Graph using BFS method				
29 Design, Develop and Implement a program to construct spanning to					
	Kruskal's and Prims algorithm				
30	Design, Develop and Implement a program to find shortest path using Dijkstra's				
	algorithm.				
Construct a program to implement Hash Functions and Collision Re					
	Technique				

Students are required to make one mini-project based on above data structures.

Text Books

- 1. Seymour Lipschutz, "Schaum's Outline of Data Structures", McGraw-Hill Education, 1st edition, 1986.
- 2. Sartaj Sahni, "Data Structures, Algorithms, and Applications in C++", 2nd edition, Silicon Press, 2004.

Reference Books

- 1. Michael T. Goodrich, Roberto Tamassia, and David M. Mount, "Data Structures and Algorithms in C++", 2nd Edition, Wiley, 2011.
- 2. Robert L. Kruse, "Data Structures and Program Design in C", 2nd Edition, Prentice Hall, 1996.
- 3. Yedidyah Langsam, Moshe J. Augenstein, and Aaron M. Tenenbaum, "Data Structures Using C and C++", 2nd edition, Prentice Hall, 1995.
- 4. Vishal Goyal, Lalit Goyal and Pawan Kumar, "Simplified Approach to Data Structures", 1st edition, Shroff Publishers, 2014.

E-Books and online learning material

- 1. Data Structures and Algorithms: by Granville Barnett, and Luca Del Tongo. https://www.mta.ca/~rrosebru/oldcourse/263114/Dsa.pdf Accessed on 15-05-2025
- 2. Data Structures and Algorithms in JAVA: by Michael T. Goodrich and Roberto Scheme and Tamassia
 - https://eduarmandov.wordpress.com/wp-content/uploads/2017/05/c_c-data-structures-and-algorithms-in-c.pdf Accessed on 15-05-2025

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Online Courses and Video Lectures

 1. https://nptel.ac.in/courses/106102064
 Accessed on 15-05-2025

 2. https://nptel.ac.in/courses/106106127
 Accessed on 15-05-2025

 3. https://nptel.ac.in/courses/106105085
 Accessed on 15-05-2025

 4. https://nptel.ac.in/courses/106106133
 Accessed on 15-05-2025

Supplementary SWAYAM Course

Sr.	Course	Instructor	Host Institute	URL
No	Name			
•				
1	Data	Dr.S.Sasikala	Institute of distance	https://onlinecourses.swayam2.ac.in/cec19_
	Structures		Education University	cs04/preview
			of Madras	
2	Data	Dr. M.	College of	https://onlinecourses.swayam2.ac.in/cec25_
	Structures	Deivamani,	Engineering,	ma15/preview
			Guindy, (CEG),	
			Anna University	

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Course Code: CCS103 Course Title: Computer Architecture

Programme: B.Tech.	L: 3 T: 1 P: 0	Credits: 4	
Semester: 3	Theory/Practical:	Teaching Hours: $45(L) + 15(T) = 60$	
	Theory	hrs	
Total Max. Marks: 100	Continuous Internal	End Semester Examination (ESE)	
	Assessment (CA)	Marks: 60	
	Marks: 40		
Minimum Percentage of Numerical / Design / Programming Problems in ESE: 30%			
Duration of End Semester Examination (ESE): 3 hours			
Course Type: Core Course			

Prerequisites (if any): NIL

On completion of the course, the student will have the ability to:

CO#	Course Outcomes		
1	Understand the Data representation, Register Transfer and micro-operations in		
	computer system.		
2	Illustrate the CPU architecture and I/O interfacing for different modes of transfer.		
3	Analyze memory hierarchy in computer system for efficient memory		
	management.		
4	Understand the organization of components of a computer system and their		
	interconnectivity.		
5	Develop assembly language programs using 8085 instruction set to perform		
	fundamental operations.		
6	Interface peripheral devices with microprocessors using 8255, 8259, and 8237.		

Contents

Part-A

Unit-1 Data Representation

4(L) hrs

Data types, Complements, Fixed point representation, IEEE 754 Floating point representation (32bit/64bit), Error detection and correction.

Unit-2 Register Transfer and Micro-operations

8(L) hrs

Addition, Subtraction, Multiplication and division algorithms and hardware, Three-state buffer, Binary Adder, Binary Incrementor, Register-transfer language and operations, Arithmetic micro-operations, Logic micro-operations, Shift micro-operations, Arithmetic logic shift unit.

Unit-3 Computer Organization and Design

8(L) hrs

Instruction codes - Direct and Indirect Address, Computer registers, Computer instructions, Timing and control, Instruction cycle, Instruction format, Memory, register, and input-output reference instructions, Input/ Output and interrupts, Design and working of a complete basic computer, Control functions, Design of accumulator logic.

Unit-4 Memory Organization

4(L) hrs

Memory hierarchy, High-speed memories, Main Memory, Cache memory, Associative memory, Memory management techniques.

Part-B

Unit-5 Central Processing Unit and Input-Output Organization

8(L) hrs

General register organization, Stack organization, RISC and CISC architecture, I/O interface and types, Modes of transfer, DMA.

Unit-6 8085 Microprocessor Architecture and Programming

10(L) hrs

Introduction to microprocessors, 8085 microprocessor architecture Pin Diagram, Bus structure, Addressing modes, Instruction classification, Instruction formats, Data transfer operations, Arithmetic operations, Logical operations, Branch operations, Stack and subroutine operations.

Unit-7 Interfacing 3(L) hrs

8255 Programmable Peripheral Interface, 8259 interrupt controller and 8237 DMA controller.

Tutorial hours will be used for practical sessions of Assembly Language Programming of 8085 microprocessor using 8085 trainer kits and practice problems related to the course.

Text Books

- 1. M. Morris Mano, "Computer System Architecture", 3rd edition, Pearson Education, 1993.
- 2. William Stallings, "Computer Organization and Architecture", 11th edition, Pearson Education, 2019.
- 3. D.A. Patterson and J.L. Hennessy, "Computer Architecture: A Quantitative Approach", 5th edition, Morgan Koffman, 2011.
- 4. Ramesh S. Gaonkar, "Microprocessor Architecture, Programming, and Applications with 8085", 6th edition, Penram International Publication, Prentice Hall, 2002.

Reference Books

- 1. D.A. Patterson and J.L. Hennessy, "Computer Organization and Design: The Hardware/Software Interface", 5th edition, Elsevier India, 2016.
- 2. C. Hamacher, Z. Vranesic and S. Zaky, "Computer Organization", 5th edition, McGraw Hill, 2011.

Guru Nanak Dev Engineering College, Ludhiana An Autonomous College under UGC Act 1956

B.Tech. (CSE), Scheme - 2024

3. B. Ram, "Fundamentals of Microprocessors and Microcomputers", 7th edition, Dhanpat Rai Publications, 2011.

Online Learning Materials

1. https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html

Accessed on March 20, 2025.

2. https://www.youtube.com/watch?v=UpU5svo87Oo

Accessed on March 20, 2025.

3. https://en.wikipedia.org/wiki/Computer architecture

Accessed on March 20, 2025.

4. https://www.coursera.org/learn/comparch

Accessed on March 20, 2025.

Supplementary SWAYAM Course

Sr. No.	Course Name	Instructor	Host Institute	URL
1.	Computer Architecture	By Prof. Smruti Ranjan Sarangi	IIT Delhi	https://onlinecourses.nptel.ac.in/noc23_cs67/preview
2.	Microprocesso rs and Microcontrolle rs	Prof. Santanu Chattopadhyay	IIT Kharagpur	https://onlinecourses.nptel.ac.in/noc25_ee49/preview

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

> Course Code: ESCS101 Course Title: Digital Electronics

Programme:	L: 3 T: 0 P: 2	Credits: 4		
B.Tech.				
Semester: 3	Theory/Practical: Theory	Teaching Hours: 45 (L) + 30		
		(P)=75 hrs		
Total Max.	Continuous Internal Assessment	End Semester Examination		
Marks: 150	(CA) Marks: 90	(ESE) Marks: 60		
Minimum Percentage of Numerical / Design / Programming Problems in ESE: 50%				
Duration of End So	emester Examination (ESE): 3 hours	3		
Course Type: Core	Course Type: Core Course			

Prerequisites (if any): Basics of Electrical and Electronics Engineering

On completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Apply the structure of number systems in digital design.
2	Minimize the Boolean expressions in SOP and POS form using K-maps.
3	Apply knowledge of basic characteristics of logic families to design digital circuits.
4	Demonstrate the basic knowledge of behavioral objects of VHDL in programming.
5	Implement combinational logic circuits using Boolean algebra and logic gates and simulate them using VHDL.
6	Analyze Synchronous and Asynchronous sequential circuits using Flip Flops, registers and Counters and simulate them using VHDL.

Contents

Part-A

Unit-1 Number system

7 (L) hrs

Introduction to number system - Binary, Octal, Decimal, Hexadecimal. Number base conversions- 1's, 2's, rth's complements, signed Binary numbers. Binary Arithmetic, Binary codes - Weighted BCD, Gray code, Excess 3 code, ASCII – conversion from one code to another.

Unit 2 Boolean Algebra

7 (L) hrs

Logic gates, NAND-NOR Implementation, Boolean postulates and laws, basic logic functions, standard forms of logic expressions – Sum of Products (SOP), Product of Sums (POS), Minterm, Maxterm. Minimization of Boolean expressions – using Boolean Algebra and Karnaugh map Minimization.

Unit-3 Logic families

4 (L) hrs

Brief overview of Transistor as a switch, Logic gate characteristics – propagation delay, speed, noise margin, fan-out and power dissipation. Standard TTL and static CMOS gates.

Unit-4 Introduction to VHDL (VHSIC Hardware Description Language) 4 (L) hrs
Behavioural – data flow algorithmic and structural description, lexical elements, data objects types, attributes, operators. VHDL coding examples.

Part-B

Unit-5 Combinational logic

12 (L) hrs

Arithmetic circuits, Magnitude Comparator, decoders, encoders, code converters, parity checker, multiplexers, de-multiplexers, and their use in logic synthesis. Implementation of combinational logic using MUX, Hazards in combinational circuits, combinational circuit design examples in VHDL and simulation.

Unit-6 Sequential Logic Design

12 (L) hrs

Latches and Flip Flops (SR, D, JK, T), Timing in sequential circuits, Shift register, Counters – synchronous, asynchronous, Modulus and Ring Counters. Sequential circuit design examples in VHDL and simulation.

Laboratory Work

To implement the above topics covered with Digital Electronics kits & IC's and VHDL examples for combinational and sequential circuits using XILINX ISE 9.1/9.2.

Following is only the suggested list of Practical's. Instructor may frame additional Practical's relevant to the course contents.

Experiment	Experiment Title		
No.			
1	To verify the truth table of various logic gates using ICs' 7408, 7402, 7400, 7404,		
	7432, 7486.		
2	To implement basic gates using universal gates NAND and NOR.		
3	4-Bit Binary-to-Gray and Gray-to-Binary Code Converter: Realization using		
	XOR gates.		
4	4-Bit BCD-to-Excess-3: Realization using basic and universal gates.		
5	Multiplexer: Truth-table verification and realization of half adder and full adder		
	using IC74153 chip.		
6	Implement Arithmetic Circuits using basic VHDL simulation.		
7	Implement 4:1 MUX and 8:1 MUX using VHDL for a given problem.		
8	Implement 1:4 DEMUX and 1:8 DEMUX using VHDL for a given problem.		
9	Implement SR, JK, D and T Flip Flops using VHDL simulation.		
10	Realization of 4-bit counter asynchronous and synchronous counters using		
	VHDL.		

Text Books

- 1. Mano M.M., Ciletti M.D., "Digital Design with an Introduction to the Verilog HDL", 6th Edition, Pearson India, 2006.
- 2. Thomas L Floyd, "Digital Fundamentals", 11th Edition, Pearson, 2018.

Reference Books

- 1. A. K. Maini, "Digital Electronics: Principles, Devices and Applications, Wiley, 2007.
- 2. Michael D. Ciletti, "Advanced Digital Design with the Verilog HDL", 2nd edition, Pearson education, 2017.
- 3. Roth and Kinney, "Fundamentals of Logic Design", 7th edition, Cengage learning, 2014.
- 4. Laboratory Manuals.

Online Learning Materials

1. https://www.youtube.com/watch?v=BikBi6ipmyk&list=PLdlPA9pGVVtZF-VSy02wOiUqrPWptjuGt

Accessed on April 15, 2025

- 2. https://www.youtube.com/watch?v=oNh6V91zdPY&list=PLbRMhDVUMnge4gDT0vB WjCb3Lz0HnYKkX Accessed on April 15, 2025
- 3. https://www.youtube.com/watch?v=CeD2L6KbtVM&list=PL803563859BF7ED8C Accessed on April 15, 2025

Supplementary SWAYAM Course

Sr. No.	Course Name	Instructor	Host Institute	URL
1	Digital System Design	Prof. Neeraj Goel	IIT Ropar	https://onlinecourses.nptel.ac.in/noc21_ee39/preview
2	Digital Electronic Circuits	Prof. Goutam Saha	IIT Kharagpur	https://onlinecourses.nptel.ac.in/noc25_ee20/preview
3	Digital Circuits	Prof. Santanu Chattopadhyay	IIT Kharagpur	https://onlinecourses.nptel.ac.in/noc21_ee75/preview

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

Course Code: SMCS101

Course Title: Seminar and Technical Report Writing for Engineers

Programme:	L: 0 T: 0 P: 2	Credits: 1		
B.Tech.				
Semester: 3	Theory/Practical: Practical	Teaching Hours: $30(P) = 30 \text{ hrs}$		
Total Max.	Continuous Assessment (CA)	End Semester Examination		
Marks: 50	Marks: 50	(ESE) Marks: Nil		
Duration of End Semester Examination (ESE): NA				
Course Type: Core Course				

Prerequisites (if any): Knowledge of Text based editors

On completion of the course, the student will have the ability to:

CO#	Course Outcomes
1	Install BibTeX and PDFLaTeX on Windows and Linux operating systems.
2	Utilize LaTeX tools for document preparation and compilation.
3	Compare LaTeX and Markdown formats using Pandoc for documentation purposes.
4	Present technical content effectively through oral presentations.
5	Use LaTeX effectively for technical document writing.

Contents

Experiment No.	Experiment Title
	Introduction to LaTeX and Its Background
	 History of LaTeX, its evolution, and use cases.
1	• Comparison with other document preparation tools (Word, Google
	Docs).
	 Advantages of LaTeX in research and technical writing.
	Introduction to Supporting Tools for LaTeX
2	 TeXLive, TeXworks and Overleaf.
	 Online vs. offline compilation of LaTeX documents.
	Installation
3	 Installing BibTeX on Windows: step-by-step process.
	 Installing PDFLaTeX on Linux: dependencies and configurations.
1	Develop a LaTeX script to create a simple document that consists of 2 sections
4	[Section1, Section2], and a paragraph with dummy text in each section. And

An Autonomous College under UGC Act 1956 B.Tech. (CSE), Scheme - 2024

	also include header [title of document] and footer [institute name, page number] in the document.						
5	Develop a LaTeX script to create a document that displays the sample Abstract/Summary.						
6	Develop a LaTeX script to create the Certificate Page of the Report [Use suitable commands to leave the blank spaces for user entry].						
	Develop a LaTeX script to create a document that contains the following table with proper labels:						
	SNo	LIDN	C4md and Name	Marks	Marks		
7 S.No URN Student N	Student Name	Subject1	Subject2	Subject3			
	1	4XX22XX001	Name 1	89	60	90	
	2	4XX22XX002	Name 2	78	45	98	
	3	4XX22XX003	Name 3	67	55	59	
8	Develop a LaTeX script to include the side-by-side graphics/pictures/figures in the document by using the subgraph concept.						
9	Develop a LaTeX script to create a document that consists of two mathematical equations.						
10	Develop a LaTeX script to demonstrate the presentation of Numbered theorems, definitions, corollaries, and lemmas in the document.						
11	Develop a LaTeX script to create a document that consists of two paragraphs with a minimum of 10 citations in it and display the reference in the section.						
12	Develop a LaTeX script to create a simple report and article by using suitable commands and formats of Major/Minor project report.						
13	Markdown and Pandoc Introduction to .md format and Markdown syntax. Use cases of Markdown in documentation and technical writing. Conversion between LaTeX and Markdown using Pandoc.						

Note:

- Students will give 15 minutes presentations on topics related to emerging technologies to showcase their seminar presentation abilities.
- Students will also prepare a simple report based on topic of presentation using formats of Major/Minor project report.
- Evaluation of seminar will be based on Rubrics.

Reference Books

- 1. Donald Knuth E., "The TexBook", Twentieth revision, Addison Wesley, 1991.
- 2. Leslie Lamport, "LaTeX: A document preparation system, User's guide and reference manual", 2nd edition, Addison Wesley, 1994.

- 3. Frank Mittelbach, with Ulrike Fischer "The LaTeX Companion, 3rd edition (TTCT series)", 3rd edition, Addison-Wesley Professional, 2023.
- 4. Van Emden J., "Effective communication for Science and Technology", Palgrave, 2001.
- 5. Van Emden J., "A Handbook of Writing for Engineers", Macmillan, 1998.
- 6. Van Emden J. and Easteal J., "Technical Writing and Speaking, an Introduction", McGraw-Hill, 1996.
- 7. Pfeiffer W.S., "Pocket Guide to Technical Writing", Prentice Hall, 2000.
- 8. Eisenberg A., "Effective Technical Communication", McGraw-Hill, 1992.

Online Learning Materials

1.	https://latex-tutorial.com/tutorials/	Accessed on April 07, 2025
2.	https://guides.nyu.edu/LaTeX/home	Accessed on April 07, 2025
3.	https://www.overleaf.com/learn	Accessed on April 07, 2025
4.	https://www.overleaf.com/gallery/tagged/homework	k Accessed on April 07, 2025
5.	https://www.tug.org/twg/mactex/tutorials/ltxprimer	-1.0.pdf

Accessed on April 07, 2025